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The results of a detailed mean velocity survey of a smooth-wall turbulent bound- 
ary layer in an adverse pressure gradient are described. Close to the wall, a 
variety of profiles shapes were observed. Progressing in the streamwise direction, 
logarithmic, $-power, linear and $-power distributions seemed to form, and 
generally each predominated at  a different stage of the boundary-layer develop- 
ment. It is believed that the phenomenon occurred because of the nature of the 
pressure gradient imposed (an initially high gradient which fell to low values as 
the boundary layer developed) and attempts are made to describe the flow by 
an extension of the regional similarity hypothesis proposed by Perry, Bell & 
Joubert (1966). Data from other sources is limited but comparisons with the 
author’s results are encouraging. 

1. Introduction 
In  this paper attempts are made to establish a correlation scheme for the 

mean velocity distributions in turbulent boundary layers which are developing 
in arbitrary adverse pressure gradients. The paper is concerned primarily with 
the case where the gradient is decreasing with streamwise distance. 

Because of the encouraging success of the ‘regional similarity’ approach 
proposed by Perry et al. (1966), it  was decided to see if it could be extended to 
a description of the new phenomena reported here. In this approach dimensional 
methods are used and, like many similar approaches, it fails to provide im- 
mediately obvious physical explanations of the phenomena. However, it appears 
to be a useful tool for sorting out the significant variables in the problem if it is 
used in conjunction with carefully measured data. Simple similarity equations 
are produced which can be checked readily by experiment. Such likely similarity 
laws would perhaps be overlooked when using methods of analysis based on 
preconceived ideas about the interaction of the turbulence with the mean flow. 
Analyses based on physical arguments could prove more fruitful once the likely 
governing parameters have been established and an attempt a t  such an analysis 
is shown later in the paper. 

The usual theories of wall turbulence give the form of the mean-velocity 
distribution close to the wall by assuming that the gradient of this distribution 
at  a point in the flow is related directly to the local shear stress r at that point. 
Such theories are exemplified by Prandtl’s mixing-length hypothesis or other 
theories which are consistent with the Boussinesq concept. The local shear stress 
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is determined by the use of the mean-flow momentum equation, and it is often 
assumed that close to the wall the mean-flow inertia forces are small. The dis- 
tribution of local shear stress then becomes linear and is given by 

TIP = (.o/P) + aY7  

where ro is the wall shear stress, p is the fluid density, a is the kinematic pressure 
gradient ( = (l/p) (dpldx) where p is the static pressure and x is the streamwise 
distance) and y is the distance normal to the wall. 

For the case when ro/p 9 ay, the effect of a can be ignored and these theories 
predict the logarithmic distribution of mean velocity U with y for flow beyond 
the viscous sublayer. For the case when a y B  ~ ~ / p ,  the effect of ro can be ignored 
and a &-power distribution in velocity is obtained. Hence the more general 
expression obtained by such analyses asymptotes to a logarithmic law for low 
values of y and approaches a +-power law for large values of y, and the theories 
indicate that these two laws are separated by a large blending region (e.g. 
see Townsend 1961, and Perry et al. 1966). The assumption that the mean relative 
motions at a point in the flow are governed by some property of the turbulence 
characteristic to that point (e.g. the Reynolds stress in the case of the momentum 
transfer theory) will be referred to as the ‘local similarity hypothesis’. 

Perry et al. (1966) in their regional similarity approach propose that the 
momentum equation is not directly relevant for determining the mean profile 
close to the wall provided the appropriate similarity parameters are used. 
Coles (1955) adopted this philosophy when considering the ‘law of the wall’, 
where he assumed that this law retained its universality irrespective of the state 
of balance of momentum. The momentum and continuity equation can then be 
used for finding the consequent shear-stress distribution and streamline pattern 
once the similarity law is known. In  any case, if the variations of ro and 01 are 
not too rapid, their local streamwise values will be sufficient for describing the 
profiles, and the mean velocity U is a function only of U,, a, v and y ,  even if there 
are appreciable mean-flow accelerations present. U,is theshear velocity ( = (r,/p)B) 
and v is the kinematic viscosity. Regions which can be described in terms of the 
local streamwise values of the parameters will be regarded as belonging to the 
wall region. Beyond this region is the ‘historical region’ where such parameters 
are probably inadequate for describing the flow. 

In  this approach it is further assumed that there exist finite regions (which may 
be small or large) within which the profile shape can be described in terms of one 
characteristic regional parameter. This will be referred to as the ‘regional simi- 
larity hypothesis ’. 

Adjacent to the wall there is a viscous region where both v and U, govern the 
profile shape. However, beyond this is the fully turbulent region where it is 
proposed that U, alone is the governing regional parameter and so 

aulaY = $[Y, 741. 

auPY = U,lf.XY), 
Dimensional analysis gives 

where X i s  a universal constant. Integration leads to the logarithmic distribution. 
Further from the wall the appropriate parameters are U, and a and no analytical 
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deduction can be made by dimensional analysis alone since too many variables 
are involved. Such regions will be referred to as ‘blending regions’. Finally, a 
region is encountered where only a plays a part and so 

where K ,  is a universal constant. Integration leads to the +-power equa- 
tion. 

The local similarity hypothesis predicts the same general behaviour. However, 
the regions are approached asymptotically and the effects of the parameters 
U, and a predominate over each other only in those regions where one makes a 
dominant contribution to the local shear stress, i.e. when 70/p  is much greater 
or much less than ay.  The regional similarity approach makes no such commit- 
ments and in fact the data cited by Perry et al. indicate that a logarithmic region 
extends out from the wall where a y  is 1.41 times the value of 70 /p ,  while the i- 
power region extends down to values near this. The solutions to the various 
differential equations for the velocity distribution, shown above, involves a 
treatment of the boundary conditions by a matching technique based on dimen- 
sional analysis. In this treatment the unknown variations of the velocity distribu- 
tion in a blending region can be accounted for by one empirical universal constant 
and an example of this is shown in $4. 

In  the local similarity approaches the variations of velocity in the blending 
regions are given and this variation governs the value of the constant involved 
in the asymptotic +-power expression. Perry et al. have found this constant to 
disagree with experiment. 

The final expressions and empirical constants obtained by the regional simi- 
larity approach have been found valid for the data cited by Perry et al. even 
when there were appreciable accelerations close to the wall. Further confirmation 
is given in this paper. 

Subsequent experiments with adverse-pressure-gradient turbulent boundary 
layers have been carried out by the author. Other profile shapes besides the 
logarithmic and +-power forms were observed in regions close to the wall. 
The author believes that this was because of the nature of the pressure 
distribution used and possible extensions of the regional similarity hypothesis 
for describing these profile shapes are outlined. The data from other sources 
is compared with the author’s results. This data is limited but agreement is 
encouraging. 

2. Description of experiment 
A flat vertical plate was installed in the working section of the wind tunnel a t  

the University of Melbourne. This tunnel is a return-circuit type and has a basic 
cross section of octagonal form. Figure 1 is a diagrammatic representation of the 
working section and plate, and the major dimensions are shown. It can be seen 
that the plate is at an angle of attack to the approaching flow and the pressure 
distribution obtained is somewhat similar to that in a straight-wall diffuser. 
The purpose of the blister shown at the downstream end of the working section 
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was to remove separation on the plate, and the flap shown was installed to modify 
the flow near the leading edge so as to avoid separation bubbles. 

The plate spanned the full height of the tunnel and felt seals were provided to 
isolate the flows on either side. Corner fillets, particularly at the leading edge, 
were found to be essential to remove separation on the floor and ceiling of the 
working section. Once separation occurred anywhere, the tunnel velocity 

I - 
Plan view of working section 

_f A 

I I 

Section A-A JB \ Section B-B 
(elevation) 

0 ft. 5 ft. 10 ft. - 
Scale 

I 
FIGCJRE 1. Diagrammatic representation of working section and plate. 

fluctuated violently and the flow became largely three dimensional near the 
separation zones if these zones occurred on the floor and ceiling. Without sepa- 
ration, the flow was found to be reasonably steady and two dimensional, even in 
the corner regions. This latter point was checked with dye streaks and tufts. 
The turbulence level in the working section was reduced from approximately 
1 yo (without screens) to 0-3 yo by the use of screens. 

The pressure recovery was quite large and a fairly detailed plot of the pressure 
distribution is shown in figure 2 .  Fifteen feet of the plate were traversed along its 
centre line and the boundary layer was found to be approximately 16in. thick 
a t  the 15ft. station. 

The nominal Reynolds number of the flow (based on the velocity U,  indicated 
by the reference probe shown in figure 1) was 9.23 x lO5ft.-I, and this varied 
slowly by approximately f 4 yo during each mean velocity traverse. The tunnel 
speed was held reasonably constant at about 145ft./sec but this varied from 
traverse to traverse by 5 2 yo. However, taking into account the temperature 
variations, the maximum variation in the reference Reynolds number was only 
5 1 yo between traverses. All pertinent data is shown in table 1. 

Ten very detailed mean velocity traverses were made (up to 60 points for 
some profiles) using an automatic traversing and plotting system developed by 
the author for work of this kind. The traversing system could be programmed to 
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take measurements at desired increments of y and pause for the readings to 
settle. Non-dimensional velocity was plotted automatically against log y 
with the use of a recorder, function generator and normalizing system. The traver- 

+c; x 104 

- dCD -- x 102 
dX 

'd2C, 
-2- xi03 

i dx2 

0 

FIGURE 2. Distribution of the various parameters. 0, Pressure coefficient en; 0, 
(dC,/dx) x 102ft.-l; 8 ,  2(d2C,/dx2) x 103ft.-2; 0, +C; x lo4. Vertical lines indicate stations 
where mean velocity profiles were measured. 

uo 
zf t .  (ft./sec) 

2-5 147 
4 145.5 
5.5 143.5 
7 146 
8.5 143.7 

10 147.5 
11 147 
12.5 143.5 
14 146 
15 148.7 

0.292 
0.43 
0.515 
0.589 
0-626 
0-66 
0.679 
0.698 
0.716 
0.733 

11.0 
7.66 
5.15 
3.91 
2.50 
1.96 
1-56 
1.28 
1.05 
0.85 

TABLE 1 

6.75 
4.7 
3.0 
2.2 
1.5 
1 -0 
0.75 
0.425 
0.35 
0-32 

19-8 
17 
14 
10-9 
9 
7.8 
6 
4.8 
3.10 
2.37 

9.26 
9.21 
9.26 
9.20 
9.17 
9.20 
9.24 
9.20 
9.20 
9.36 
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sing Pitot was connected to a Siemens? 144mm 'Teleperm' differential pres- 
sure transducer with square-root action. The time lags in the system removed all 
fluctuations in the velocity indications on the recorder. A comparison of the non- 
dimensional velocity indicated on the recorder in a free stream test with that 
found using a Betz manometer and standard Prandtl tube gave a linearity within 

% for most of the range of interest. The variation of static pressure through the 
boundary layer was found to be negligible. However, this was checked thoroughly 
only at the loft. station. The pressures were measured by a probe which was 
positioned a t  1 to 2in. from the wall. 

The repeatability of results was very encouraging and the lack of scatter in 
the velocity profiles was to prove to be of importance in the work outlined in this 
paper. 

3. Correlation of experimental results with the logarithmic and half- 
power equations 

By the use of the regional similarity hypothesis, it has been shown by Perry 
et ab. that, provided the boundary layer is sufficiently developed, the regions 
shown in figure 3 occur where for the viscous region I 

Ulv, =f[yU71v1, (1) 

FIGURE 3. Proposed regions in an adverse-pressure-gradient turbulent boundary layer, 
after Perry et al. (1966). 

and for region 11, where aU/ay is independent of v, 

while for region 111, where aU/ay is independent of v and U,, the velocity dis- 

where Y, K ,  and A are universal constants. AU,/U, will be referred to as the 
slip function and represents the non-dimensional velocity given by equation (3) 
if it  is extrapolated to the wall. Square brackets are used throughout this paper 

t The full-scale range of the transducer was continuously adjustable from 0 to 36mm 
to 0 to 144mm HzO. 
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to denote a functional dependence. The complete derivation of these equations 
is not included here, since the steps and techniques are identical to those adopted 
in an extended development appearing later in the paper (also a complete deriva- 
tion has been given by Perry et al.). 

Regions 11 and 111 are separated by a blending region but it is very difficult 
to detect this from the data. The junction between equations (2) and (3) has 
been found by experiment to be almost tangential; that is, the curves join where 
aU/ay given by each equation is the same. The locus of this junction is shown as 
line AB in figure 3. Line CD represents the outer boundary of the viscous region I. 
Dimensional reasoning shows that if the lines CD and AB are located at  yb and 
yc respectively, then 

(4) 

and Yc = N(U:/a), ( 5 )  

where M and N are universal constants. The value of M is about 30 while N 
has been found to be approximately 1.41. 

Provided the boundaries CD and AB do not come too close to each other, a 
logarithmic region I1 should exist, and for this condition of flow it has been 
shown by Perry et al. that 

(6) 
-In 1 -I cu3 + A ,  

T r  x ( 5 v )  

where C is a universal constant. 
From an analysis of the experimental data of Schubauer & Klebanoff 

(1950), Perry & Joubert (1963) (rough wall), Johnston (1957,1960) and of Perry 
et al. (1966), the numerical values of K = 4.16 and C = 0.19 were obtained. In  
obtaining these it was assumed that 3- = 0.40 and A = 5.1. 

The author’s data has been plotted in the form U/U, us. log (yUl/v) in figure 4, 
(U, is the local free-stream velocity). Using the above numerical values, equation 
(2) can be put in the form 

U/U, = 5*76(z+C;)*l0glO (~U, /V)  +5-76(4G;)*10g,, ($C;)*+5.1 (*($)a, (7) 

where C; is the local skin-friction coefficient (based on ?Il). This equation is 
shown as a family of lines in figure 4 and from this the values of C; have been 
deduced. 

This figure shows a fairly convincing verification of the ‘logarithmic law of the 
wall’. A fairly smooth monotonic variation in C; resulted and this is shown in 
figure 2 and table 1. 

Figure 5 shows the data plotted as U/U, vs. y* (in.9) and equation (3) with 
equation (6) can be put into the form 

u /U,  = 4*16(ay/U:)*+ 5.76 (4c;)~loglo (O*l9U?/av) + 5*2(iC;)*, ( 8 )  

using the above-mentioned numerical values. This equation is shown as a family 
of lines in figure 5 with the appropriate values of C; found from figure 4. a was 
found by graphical differentiation and a graph of dC,/dx is shown in figure 2. 
The values are shown in table 1. 

The correlation of results shown in figure 5 is quite satisfactory for many 
profiles but the extent of correlation diminishes as one proceeds downstream. 
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x = 2 5  ti. 
x = 4 f t .  
x = 5.5 ft. 
s = 7 f t .  
x = 8.5 ft. 
5 = 10 fr. 
5 = 11 ft. 
x = 12.5 ft 
x = 14 ft. 
x = 15 fr. 

Y U I P  

FIGURE 4. Correlation of results according to the logarithmic law of the wall 
(equation 7) .  

I J  I I I I I  1 1 1 1 1  1 I I I 1 
0 0.01 01 0.5 1 2 3 4 5 6  

y in. (+-power scale) 

FIGURE 5. Correlation of results according to the &power equation (equation 8). 
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Also, the slip function included in equation (8) appears to be a few per cent too 
high for many of the downstream profiles. The actual slip function of the profiles 
is shown plotted in figure 6 and is compared with the results obtained from other 
sources. The correlation is good and the value of C = 0.19 is satisfactory although 
it should perhaps be slightly lower. The diminishing range of validity of the 
+-power equation was not observed in the experimental results cited by Perry 
et al. -in fact the results of Schubauer & Klebanoff and of Johnston showed 
extensive +-power regions to be applicable for profiles near to separation. 

v y u v  

FIGURE 6. Slip function from present experiment and other sources. Line corresponds to 
equation (6). Numbers indicate distance in feet from the leading edge. 0, Author; 8, 
P e w  & Joubert (1963) (rough wall); X ,  Schubauer & Klebanoff (1950) (z = 22.5ft.); 
0, E. 2; A, E. 5 of Perry et al.; +, Johnston (1957,1960). Plane-of-symmetry flow. 

One plausible explanation of this departure in the author’s experiment stems 
from a comparison of the pressure distributions used. In  figure 7 the distribution 
used by Schubauer & Klebanoff (1950) can be seen to give a fairly constant pres- 
sure gradient a which is imposed over quite an extensive length of the boundary- 
layer development. A rapid fall-off in this gradient is seen near the separation 
region and this will be commented on later. The author’s pressure distribution, 
on the other hand, shows an initially large a which then falls off to very low 
values as one proceeds downstream. Perhaps this means that the first derivative 
of the pressure has a diminishing influence while a new effect is entering. This 
effect could perhaps be associated with the second derivative of the pressme, 
which in this case has negative values. A profile in a region of decreasing pressure 
gradient may retain a ‘memory’ of higher upstream values of a: and the second 
derivative is associated with these upstream values. 

Figure 8 shows the pressure distribution used by Johnston. Here, the pressure 
gradient can be seen to be increasing as one proceeds downstream (daldx positive) 
and one can envisage the influence of upstream values of a being overridden 
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by an ever increasing local a. The &power region found in Johnston’s data 
extends almost throughout the whole boundary-layer thickness near separation 
(see Perry et al. 1966). It should be pointed out, however, that Johnston measured 

x ft., distance from leading edge 

FIGURE 7. Pressure distribution in Schubauer & Klebanoff’s (1950) experiments. 

0.6 

0.5 

0 4  

c, @3 

0.2 

0.1 

0 
2 1 0 

xft. 

FIGURE 8. Pressure distribution of Johnston (1957). 
(Plane of symmetry.) 

his profiles along the plane of symmetry in a laterally diverging flow. All other 
results cited so far were from two-dimensional flows. 

A noticeable difference between the author’s results and those of Johnston 
is the persistence of an extensive logarithmic region in the former as one proceeds 
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down the plate. The line corresponding to AB in figure 3 is almost horizontal 
for the author’s experiment. In  Johnston’s experiment, the &-power region pene- 
trates into the logarithmic region and obliterates it before the boundary layer 
finally separates. This can be explained in terms of equations (4) and (5). 

4. Possible extensions of the regional similarity hypothesis 
From what could be described as ‘local similarity reasoning ’ Stratford 

( 1959 a )  indicated that possible departures from the +-power distribution 
could be explained in terms of the parameters (a27/ay2)o, etc., where the suffix 
0 denotes the effective values at the wall. In  view of earlier comments the author 
suggests instead that (daldx), (d2a/dx2), etc., should be used. Also, the values of 
these streamwise derivatives are constant throughout the whole boundary-layer 
thickness and could perhaps have a more direct bearing on the mean relative 
motions than quantities defined at the wall. 

It is therefore tentatively proposed that beyond region 111, shown in figure 3, 
there will emerge a new region, this region having its profile shape governed by 
the local streamwise value of daldx alone. The choice of dajdx alone appears to 
be a logical extension of the findings of Perry et aZ. about the effects of the various 
parameters occurring separately in fairly isolated regions. This new region will 
be referred to as region IV and will be separated from region I11 by a blending 
region of unknown width. Perhaps region IV, given the right conditions, will 
penetrate into region I11 and obliterate it in much the same way as region I11 
has been observed to penetrate into region 11. Region IV will be regarded as 
belonging to the wall region, since it is still being described by local streamwise 
values of the appropriate quantity. 

The velocity gradient in region IV will be given by 

aupy = $[da/dx, y1, 

and dimensional analysis shows that 

aulay = K,(da/ax)t, (9) 

where K ,  is a universal constant. However, the absolute mean velocity must be 
dependent on all of the variables involved in the wall region, that is, 

u = $[Y,  q, a, da/dx, V ] ,  

and dimensional analysis gives 

From an integration of equation (9) and a comparison with equation (lo), 
the following linear ‘law’ for the velocity distribution is obtained, 

- K - -  y (da)J AU,Cu,S a (d”)-4] (11) 
U _ -  
77, Zuu, ax u, UV’U, ax 
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It is implied in all equations that the higher derivatives of a are negative, and 
that daldx, d2a/dx2, etc., denote the moduli of the derivatives. AU2/U, is a slip 
function? analogous to that given in the &-power expression (equation 3). 

The form of the function AU,.U, will be deduced for the case where a &-power 
region I11 exists. The simplest way of doing this is to assume that if the $-power 
equation and linear equation were extrapolated, their curves intersect at some 
value of y, y,, say, and the effective velocity at this intersection is U,. Of course 
the equations may not intersect, but a modified analysis gives the same result. 

From the assumptions made about the variables governing the mean velocity 
gradients in regions I11 and IV, yd depends on a and da/dx alone. Dimensional 
analysis then gives 

where P is a universal constant. Substituting this into equations (3) and (11) ,  
two expressions for U, are obtained. Equating these expressions enables the slip 
function to be obtained and final expression for the velocity distribution is 

y, = Pa(da/dx)-l, 

where E = {K,  P b  - K 2 P }  and is a universal constant. Hence, for this case 

and if a logarithmic region exists then from equation (6) 

The velocity profiles were plotted as UlU, us. y and extensive linear variations 
were found to exist ; these are shown in figure 9. The value of daldx was obtained 
by graphical differentiation (see table 1 and figure 2 for d2Cc;,/dx2) and it was found 
that equation (12) correlates quite well with most of the downstream profiles 
ifthe values K ,  = 27-3, E = 0.105 and the numerical values adopted in equatians 
(7) and (8) are used. Equation (12), for the form of plotting adopted, then becomes 

+0+105- a (-) da -3 + 5 ~ 7 6 ( $ C # l 0 g , ~ ( ~ ) + 5 ~ 1 ( & ' ~ ) ~ .  0.19u; 
u, ax 

(15) 

U 

This equation is shown as the family of lines in figure 9 and it can be seen that the 
correlation of the lines with the data for both slope and intercept is quite remark- 
able. However, when one considers the probable inaccuracies in calculating 
daldx, this degree of correlation may be fortuitous. 

Equation (12) is a qyadratic in Pi and this implies that it is possible for the 
linear equation to intersect the $-power equation twice if the equations are 
extrapolated. From figure 9 it  can be seen that this does in fact occur. The dotted 
line shown is the extrapolated &-power equation applicable t o  the profile at 

7 AU,/U,  was used for the roughness function in the paper of Perry, Bell & Joubert 
(1966). 
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x = loft. There appears to be some sort of blending zone between regions I11 
and IV, and this is seen as a kink in the experimental plot between the two 
crosses shown in the figure for x = lo f t .  

For the purposes of simplicity, the centre of this blending region will be re- 
garded as the junction between the two main regions, and dimensional analysis 
shows that its location y i  is proportional to yd. Therefore 

and from an analysis of the data P E 0.022. 

y; = P’a(dcc/dx)-l, (16) 

@ a 

0 1 2 3 4 5 6 7 8 9 10 11 12 

y in. (linear scale) 

FIGURE 9. Correlation of results according to the linear equation (15). Broken curve 
represents extrapolated +-power equation for profile at z = loft. The two crosses indicate 
limit of a possible blending zone in the same profile. 

The various hypothetical loci which give the junctions between the various 
regions can now be mapped out according to equations (a), (5) and (16). Figure 
10 (a) shows the junctions given by ye and y;. Although a4 and (daldx)’ z can be 
evaluated with reasonable accuracy, the values of ratio a(da/dx)-l are dubious. 
However, using these values it appears that the locus of y i  is fairly horizontal. 
From this one would expect a linear region to appear in the profiles a t  x = 2.5 ft., 
4ft. and 5.5ft. The fact that it does not may perhaps be explained in terms of 
the degree of development of the boundary layer. The cross-hatched line shown in 
figure lO(a) represents a conjectured boundary between the wall region and 
historical region and, as the boundary layer develops, this wall region thickens. 
Beyond the wall region, local streamwise values of the parameters are not suffi- 
cient to describe the flow, but there could be, a t  certain stages of development, 
a considerable overlap between what is apparently the wall region and the 
historical region. This is indicated in the figure by the dotted lines. It is therefore 
proposed that a new region will not form until the length scale defining its lower 
junction or boundary is less than the thickness of the wall region. Figure 10 ( b )  
represents some hypothetical situation which illustrates the point a little better. 

The value of y; near the back of the plate appears to be rising rapidly (if one 
can trust the accuracy of the calculations). This would imply an increasing width 
of the &-power region which in fact does not occur. On closer examination of 



494 A .  E. Perry 

figure 9, the last few downstream profiles appear to be showing a diminishing 
linear region and that yet another effect appears to be penetrating into the wall 
region. Following the pattern which has emerged from regions 11, I11 and I V  
where the velocity gradients are proportional to y-l, y-3 and yo respectively, 
perhaps yet another region with velocity gradients proportional to yk may exist. 

16 

14 

12 

10 
0' 

0 

I- , 
Possible i- 

I 

/ Lbgarithmic region I1 and viscous region I 
Half-power region I11 

(a> 

Y 

X 

Region JII forms Region IV forms 

(6) 
FIGURE 10. (a )  Calculated and conjectured boundaries of various regions. x , Calculated; 
-/-/-I-, conjectured limits of blending regions. ( b )  Diagram showing possible effect of bound- 
ary-layer history on the formation of a new region. 

This would give a region V with a #-power distribution of velocity and could 
perhaps be explained in terms of the derivative d2aldx2. This region, with its 
associated blending region may be penetrating into the &-power region. The linear 
region for the last three downstream profiles may not really exist. 

Figure 11 shows the velocity profiles plotted according to UlU, us. yg and 
extensive linear plots can be seen to occur in the last downstream profiles at 
x = 12.5, 14 and 15 ft. A regional similarity analysis would show that 
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where K ,  is a universal constant. However, because of the difficulty in obtaining 
reliable values of d2a/dx2 and considering the lack of sufficient number of profiles, 
no attempt was made to evaluate any of the constants involved. A method 
which may show promise if there were sufficient profiles would be to assume that 
equation (17)  is valid, and from the profiles deduce K ,  (d2a/dx2)8. This could be 
integrated and compared with the reasonably accurate distribution of daldx. 
If a curve of the required shape were to be produced, this would be further 
evidence for the validity of equation (17) and K ,  could be evaluated. 

0.1 I- -I 
I l l 1  I 1 I I I I I I I I I  

0 1 2 3  4 5 6 7 8 9 10 11 12 13 

y in. ($-power scale) 

FIGURE 11. Conjectured &power distribution in velocity. 

If the $-region joined into a linear region (it does not appear so in this experi- 
ment), the junction and hence the centre of the associated blending zone would 
be given by 

where Q‘ is a universal constant. 
y i  = Q’(da/dx) ( d 2 ~ / d ~ 2 ) - 1 ,  (18) 

5. Boundary-layer separation and criteria for the existence of various 
regions 

Prom what has been observed it can be concluded that boundary-layer sepa- 
ration does not appear to be associated with a single universal profile shape 
(as in the case of Coles’s law of the wake; Coles 1956) and any criteria for sepa- 
ration must take into account a multitude of possible behaviours. It is con- 
jectured here that if the regions I, 11, I11 and I V  exist simultaneously, then they 
will continue to exist provided yb < yc < yC < y6, that is 

If  any two adjacent terms in the above expression approach each other in value 
then the associated blending regions will coalesce and the appropriate region 
will be obliterated. If any two adjacent terms contradict the above inequality 
then new lengths defining the position of the various junctions can be deduced by 
the methods outlined in this paper. It may be possible, for example, for a linear 
region to join on to a logarithmic region. This has been found to be likely in the 
data of von Kehl(l943). 

My/UT < NU:/a < P’u(da/dx)-l < Q’ (claldx) (d2a/dx2)-l. (19) 
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The criteria for the existence of regions other than the simple case represented 
by expression (19) could become quite complex, since many more possible lengths 
are involved. It is diEcult to decide on the conditions in which these lengths 
have a meaning or importance without further clues from experiment (although 
many conjectures could be made). For completeness, these lengths are listed in 
table 2. This tabulation lends itself to a more general notation, e.g. a length 
which gives the distance from the wall to the place where a logarithmic region I1 
and linear region IV join, is y2, and dimensional analysis gives this as A,,U,(da/ 
dx)-B, where A,, is a universal constant. Thus the various universal constants 
which have already been mentioned are 

M AI2;  N = AZ3; P’ = AS4, and &‘ = A45. 

The quantities with asterisks refer to the outer boundary of the viscous region 
for the case of zero skin friction. For non-zero values no deductions can be made 
by dimensional analysis alone since too many variables are involved. The quanti- 
ties yT4 and yf5 probably do not have much meaning. The quantities in paren- 
thesis after the Roman numerals are the appropriate regional parameters. 

6. Comparison with other data 
Other sources of data which show results similar to those reported here are 

Nikuradse (1929) (e.g. see Schlichting 1960)’ von Kehl (1943), Schubauer & 
Klebanoff (1950), Clauser (1954) and Stratford (1959a, b) .  The first two workers 
mentioned above measured boundary-layer profiles in straight-wall diffusers 
and these would give pressure gradients of the same type as those used by the 
author. 

In  Nikuradse’s experiments, the diffuser angle was varied and for large angles 
linear regions appear to have formed. By replotting the data, $-power regions 
seem to be present for the smaller angles. For the larger angles the boundary layer 
was probably more developed. Figure 12 (u)  shows the conjectured i-powerregions 
while figure 12 (b )  shows the possible linear regions. 

The results of von Kehl show very extensive linear regions. However, due to 
lack of detailed pressure-gradient data in the above sources it was not con- 
sidered worth while to attempt any numerical correlations. 

As mentioned earlier, the pressure gradient of Schubauer & Klebanoff fell 
rapidly as separation was approached and so linear regions may perhaps be 
starting to form. Spence (1956) has plotted some of their profiles according to the 
logarithmic law of the wall and deduced some values for C;. By interpolating from 
a faired-in curve for C;the author has calculated the slip functions for the &-power 
equation for many of the profiles just upstream of separation using the numerical 
values of the constant given earlier (Perry et al. checked only the slopes on the 
$-power plot, except for the profile at x = 22.5ft. where the slip function was 
also checked). The correlation is shown in figure 13 and it can be seen that 
for the last downstream profiles the characteristic dip appears. There are an 
inadequate number of points to justify a linear region and this dip may be the 
associated blending region. 
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FIGURE 12. (a) Conjectured &-power regions in Nikuradse’s data. 0 is half the diffuser angle. 
(b)  Conjectured linear regions in Nikuradse’s data. - , Conjectured regions; 
--_- , curve of best fit. 
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The data of Clauser (1954) has been analysed in the same way. His pressure 
distributions 1 and 2 are shown in figure 14 and these are seen to have the same 
trend as the author’s pressure gradients. Figure 15 shows the velocity profiles 
corresponding to distribution 1 correlated according to the Q-power equation (8). 
The correlation is satisfactory except for the last few downstream profiles 
which exhibit the same trend as Schubauer & Klebanoffs results only more 
noticeably. (The theoretical slip function appears to be slightly low in these last 
downstream profiles). 

? 
b 

x = 22 ft. 
x = 23 ft. 

x = 24 ft. 
x = 24.5 ft. 
s = 25.4 ft. 

0 1 

y* (in.)* 

2 

FIGTJRE 13. Comparison of Schubauer & Klebanoff’s (1950) data with equation (8) 
using Spences’s values of skin friction. 

Pressure distribution 2 shows a much larger upstream gradient and lower 
downstream gradient. Also the boundary layer is twice as thick as in the previous 
case and so is probably more developed. No extensive +power or logarithmic 
distributions were found due to the inadequate number of experimental points 
taken close to the wall. C; was determined by plotting the profiles on a Clauser 
chart (Clauser 1954) and a few points from each profile appear to be in a logarith- 
mic region. (7; was determined in the same way in the previous case but there the 
logarithmic regions were more apparent. Figure 16 shows the profiles compared 
with the linear equation (15) using the author’s numerical values. The slip func- 
tion was found by assuming the existence of a logarithmic and &-power region. 
The correlation of the results is fair except for the last few profiles where a $-region 
may perhaps be forming. The short vertical lines shown correspond to the calcu- 
lated values of y i  using P’ = 0.022. This has meaning only so long as a +-power 
and linear region exists and this may be the case for the upstream profiles. 
Figure 17 shows the profiles on a $ plot. The accuracy of the calculations of profile 
slope would be about t- 10 % for the upstream profiles and 5 20 % for the profiles 
far downstream. There is some uncertainty associated with Clauser’s pressure 
distribution as quoted in his 1954 paper. It appears from his original data (only 
his profile data were available) that values of pressure were measured at  a speed 

32-2 
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slightly different from that used when the profiles were traversed and speeds 
between traverses differed. This has been corrected for by the author who as- 
sumed that the distribution of pressure coefficient was invariant with Reynolds 
number. The pressure gradients were calculated from an enlarged photograph 
of the published results and Clauser’s faired-in curves were used. 

0.6 

0 100 200 300 400 500 

Experimental pressure distributions, x: in. 

FIGURE 14. Clauser’s pressure distributions 1 and 2. 
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FIGURE 15. Comparison of Clauser’s distribution 1 profiles with the &-power 
equation (8). 

The data of Stratford (1 959 b )  is shown in figure 18 for his first test series of pro- 
files. Here the data is presented as UlU, us. y, where U, is the velocity a t  a fixed 
reference station. Linear and possibly #-power regions appear to exist but it is 
difficult to tell whether &-power or logarithmic regions are present. Hence the slip 
functions for the linear equation could not be calculated. The lines shown corres- 
pond with the slope of the linear equation using the author’s value of K ,  = 27.3. 
The short vertical line in the figure shows a typical value of y& using the author’s 
value of P’ = 0.022. Again, these calculations are fairly rough and the difficulty 
here was associated with the irregularities in Stratford‘s pressure distribution. It 
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is conjectured that the boundary layer does not respond to violent fluctuations 
in daldx and so a faked-in curve was used. Figure 19 shows the same profiles 
on a 8 plot. Stratford's second test series shows a similar trend. The slope of one 
linear profile was checked by the author and the degree of correlation was about 
the same as for the previous series. Low curvatures in the pressure-distribution 
graph in this latter case made calculations of da/dx difficult. 

yin. (linear scale) 

FIQURE 16. Comparison of Clauser's distribution 2 profiles with the linear equation ( I  5). 
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y in. (3 scale) 

FIGURE 17. Clauser's distribution 2 profiles on a $ plot. 
Lines represent conjectured region. 
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FIGURE 18. Stratford's first test series of profiles on a linear plot. Slope of lines 
correspond to author's value of K ,  = 27.3. 
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FIGURE 19. Stratford's first test series of profiles on a 4 plot. 
Broken lines represent conjectured $ region. 
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7. A local similarity approach 
A ‘mixing-length ’ interpretation can be given to these results. Although 

the analysis is rather crude, it could perhaps lead to some insight into the physical 
processes occurring. 

Assume that the fully-turbulent part of the wall region can be divided into 
two major zones. 

In  zone 1, which is closer to the wall, the equation which seems to describe the 

flow adequately is aulay = url.xy. (20) 
In zone 2 the appropriate equation is 

This equation is applicable to the +-power region but it could perhaps be also 
applicable to the linear and #-power regions. 

Consider a boundary layer which is developing in an adverse pressure gradient 
where daldx and d2a/dx2 are negative. Close to the wall the fluid is moving slowly 
and so has plenty of time to adjust to the diminishing local streamwise values of 
a and equation (21) will be directly applicable. However, far from the wall the 
eddy structure may be coarser and the average vorticity is being convected more 
rapidly by the mean flow. These effects may possibly contribute to a ‘time-lag’ 
effect in the processes represented by equation (21). Perhaps for these regions 
the appropriate value of a to  use is not that which prevails at  the point of observa- 
tion but one which would be measured at some effective distance 1 upstream 
where a is a t  some higher value aR say. This ‘persistence length’ I is analogous 
to the length used in the usual mixing-length theories where some quantity or 
effect is conserved as the fluid element moves through a ‘mixture length’ 6. 

Hence the appropriate equation to  use may be 

The pressure gradient upstream of some station x can be expressed as a series 
expansion (ignoring terms higher than the third) 

If in analogy with the usual mixing-length theories we let 1 be given by 

where Z‘ is a universal constant, then equations (22), (23) and (24) give 
1 = X’y, (24) 

The function of integration C can be evaluated for the case when a +-power 
region exists by using the effective boundary condition 
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The various asymptotic forms of this equation agree with those forms deduced 
using the regional similarity hypothesis. For example, if 

a < X’yda/dx < *X’2y2d2a/dx2, 
that is, if y B (l/%’) a(da/ds)-l 

y < (21%’) (daldx) (d2a/dx2)-1, and 

then (25) gives U/U, = (+X’*K,) y(da/dx)* + (AUi/U,).  

Expression (26) is analogous to the criterion 

Y c  < Y Y& 

found for the existence of a linear region when using the regional similarity 
approach. Equation (27) is identical to equation (1 I) if +X’i Kl is put equal to 
K, and AUhjU, is put equal to AU,IU,. 

With the author’s value of K, = 27-3, the value of Z-‘ and hence the ‘per- 
sistence length’ I is rather large; in fact it is too large to neglect the effect of the 
second derivative in the regions of the flow where the experiments indicate a 
linear profile. Also the blending region between the Q-power and linear equations 
given by equation (25 )  does not correspond with the data and AU;l/U, is not 
equal to AU,/U,. This appears to arise from an anomaly common to most mixing- 
length-type theories and could be explained in terms of the interpretation given 
to the length 1. If i t  is taken as an effective length rather than an actual physical 
distance moved by a fluid element, then the actual distance moved could be 
much shorter than 1. The fluid element does not then really know about the con- 
ditions too far upstream and as far as it is concerned, the derivative daldx 
can be regarded as constant over the effective distance 1. The same difficulty is 
encountered in Prandtl’s mixing-length hypothesis when considering a repre- 
sentative change in velocity of a fluid element as it moves from a slowly-moving 
layer to a rapidly-moving one. If these layers are at a distance 1 apart then this 
change Au is usually taken as Au = laUT/ay. This should be written as 

if I is interpreted as an actual length rather than an effective length. 
The rather large blending regions given by equation ( 2 5 )  could be modified, 

by using a different expression for the variation of I, so that the equation agrees 
with experiment. Experiment indicates that on moving from the wall, I remains 
zero for some finite distance, then undergoes a fairly rapid increase and then 
settles down to a linear variation. This implies that a different eddy structure 
exists beyond the +-power region and the use of the regional similarity hypothesis 
seems a more suitable approach than this local similarity analysis. However, 
this latter approach could be a useful qualitative guide for gaining an under- 
standing of the phenomena. 
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8. Possible applications to three-dimensional layers 
Perry & Joubert (1965) have proposed a three-dimensional version of the 

law of the wall for a boundary layer which is yawed by a lateral component of the 
pressure gradient. The analysis was based essentially on eddy -viscosity concepts. 
From an analysis of Johnston’s data (Johnston 1957), the proposed equation 
shows definite departures from the experimental data. Some preliminary 
attempts have been made to extend the regional similarity hypothesis to three- 
dimensional layers and this has met with some success. The details are in process 
of publication (Joubert, Perry & Brown 1966). 

9. Conclusions 
From the author’s experiments and other data it appears that because of 

the nature of the gradient imposed on the flow, other profile shapes besides the 
logarithmic and *-power distributions are possible in the wall region. These 
profile shapes (a linear and $-power distribution) appear to fit in quite well with 
a more general version of the regional similarity hypothesis proposed by Perry 
et al. It seems that as the pressure gradient falls to small values, higher stream- 
wise derivatives of the pressure become involved and the data indicate that their 
effects are confined to certain regions or layers in the flow and this gives rise to 
the linear and $-power regions. However, the experimental evidence for this latter 
region is very small. 

To justify the proposed equations fully, more experiments should be carried 
out with particular care taken in measurement of the pressure distribution. 
These experiments should include the case of an increasing pressure gradient. 
Also the various turbulence quantities should be measured. 
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